
DEREMER for Rev 19-0

DATE: December 2, 1981

TO: DEREMER Users

SUBJECT: DEREMER for Rev 19-0

ABSTRACT

This memo describes the changes to DEREMER for Rev. 19-0.

1. Few functionality

Described below.

2. User visible bug fixes

The combination of command line options -PL1G and -DEBUG now generates
the correct suffix .DEBUG.PL1G, instead of .DEBUG.PL1.

5. Internal bug fixes

None.

4. Outstanding problems

None.

Generated parsers now have appropriate language suffix

A previous rev of DEREMER introduced the flags -PLP, -PL1G, -PL1, and
-SPL. These flags now control the suffix of the generated parser. For
example, the command line:

deremer foo.deremer -pip

will create the parser 'foo.pip1, instead of 'foo.deremer.parser'.

If no language flag appears on the command line, DEREMER will default
to -PIP. If more than one appears, DEREMER will announce an error.

The -DEBUG option will generate a parser name with the component
1.debug1, for example:

deremer foo.deremer -pl1 g -debug

DEREMER for Rev 19-0

will create the parser 'foo.debug.pl1g1, instead of
1foo.deremer.debug'.

Other output files change name

Other output files no longer contain the ' .DERMER1 component. For
example, the DEREMER source file 'foo.deremer' will generate (with
appropriate command line options) the following output files:

foo.symbol.table
foo.tables
foo.externals
foo.fsa
foo.grammar

Note on the 'syntax error' facility

In order to prevent an infinite loop in the error recovery algorithm,
you should have a production in your DEREMER source file as follows:

<start_symbol> ::= syntax_error end_of_file_;

This production ensures that there will always be at least one
production pending on the stack which contains the token
'syntax_error'. This particular production means that in the worst
case, recovery from a syntax error will read tokens till the end of the

c input, and then stop.

New clause to control the parsing stack

The '^stack' clause allows you to redefine the length of the state and
symbol stacks in the generated parser, and allows the option of making
the stacks external rather than internal. The syntax for this clause
is:

$stack <integer> [external];

The integer must be greater than 0, and will be used as the length of
both the state and the symbol stacks. The keyword 'external' is
optional. If used, then the stacks are declared with storage class
'external static'. The actual declaration looks like this:

del 1 dp$_stacks external static,
2 dp$_state_stack(...) bin,
2 dp$_state stack ptr bin,
2 dp$_symboT_stack~(...) ptr,
2 dp$_symbol_stack_ptr bin;

Output files generated in current ufd

Page

http://'foo.debug.pl1g1

jrSfc-S

DEREMER for Rev 19-0

DEREMER now generates all output files in your current ufd. Previous
versions generated output files in the same ufd as specified for the
input file.

EXAMPLE:

a <trans6>vrpgtst
so.deremer <trans4>schwartz>rpg>compiler>parse_input_stmt.deremer

This used to leave the generated files in
<trans4>schwartz>rpg>compiler. Now, it leaves the generated files in
< trans6>vrpgtst.

New internal subroutine - dp$ recover

The internal mechanism for recovering from syntax errors has now "been
encapsulated into a callable subroutine named 'dp$_recover'. This
subroutine may be called from inside faction clauses.

This routine will not normally return - it will do a non-local goto to
the label 'dp$_next', in the main parser loop. The exception is if the
entire rest of the input is swallowed without having recovered. In
this case, dp$__recover will return.

Note - This is only available if you have specified ' syntax_error' in
your productions.

Only -PLP now gets options(shortcall)

Internal parser routines will only be given the attribute
'options(shortcall)' when the -PLP flag is present. This is to avoid
warnings on this clause now given by SPL.

PIELIB is a 'qualified' library available for PRIME internal use in
product building.

At 19-0 PIELIB is used in creating the DBMS preprocessors CDML and
FDML.

/^\

/0^\

05/21 /81 NEW FEATURES: 1)The number of arguments in a procedure call has been
19.0 increased to 60. 2) a -SIL option has been added to supress sev 0

error messages.

02/25/81 BUGS FIXED: Initialization of unaligned character variables.
18.2

11/06/80 BUGS FIXED: 1) DO UNTIL register tracking. 2) A = -A*10
18.1 3) Use of XB

05/16/80 BUGS FIXED: 1) Comparison of a left justified BIT with a longer
18.0 bit constant. 2) FB15 = -FB31 works again.

NEW FEATURES: The number of arguments in a procedure call has "been
increased to 50.

04/28/80 BUGS FIXED: 1) CST0RE(P->FB31 ,P->FB31 ,P->FB31 + 1) now loads the
17.4-1 old value. 2) MOD does not cause multiple indirects.

04/24/80 BUGS FIXED: 1) CST0RE(FB31, X, Y) now returns the correct value.
17.04 2) INHIBIT and ENABLE now generate INHM and ENBM.

3) FB31 = - FB15 now works. 4) MOD will now JMP around ADD, not SKP.
5) M0D(FB31, FB15) will now work. 6) DIVIDE(FB31 ,FB15,15) will work.
7) CSTORE now evaluates its arguments in the correct order.
8) BIT assignments from unaligned BITs to aligned BITs now work.
8) Using -32768 ('SOOO'H) in a WHEN expression is now allowed.
NEW FEATURES: PLP now supports the interim error reporting protocol.

01/04/80 BUGS FIXED: 1) STATIC INIT of BIT values in a structure were being
06.08 ignored. 2) the third argument to CSTORE may now be an expression.

3) external shortcalled functions will now work in expressions.
4) the MOD function returned incorrect values with BIN(31) args.
5) one may now use a simple GOTO in an OTHERWISE clause.

10/25/79 xxxxxxxxxx INCOMPATIBLE VERSION xxxxxx********
06.07 BUGS FIXED: 1) CSTORE causing a STAC with indexing 2) X-register

tracking. 3) ENTRY statements causing problems when loading.
NEW FEATURES: 1) The token buffer is now 10,000 tokens for the
DEREMER hackers. 2) The sense of CSTORE has "been reversed from the
documentation: a return value of ' 1 'b indicates success.
3) There is a new option on the procedure statement called SHORTSTACK
It causes the size of the minimum stack to be reduced to 10 words.
NOTE: This restricts the PLP operations allowed within the PROC.

03/22/79 BUGS FIXED: 1) char array size allocation 2) char array constant index
06.06 calculation 3)TRIM(CHAR ARRAY(l),'11 !b) 4) Alternate entry DBG groups

5)

03/12/79 BUGS FIXED: 1) Entry variables. 2) Illegal segno errors within the
06.05 the compiler. 3) DO 1= 1 TO 10, 20 TO 30; not incrementing I.

4) Register tracking over optimized char moves. 5) ARRAY(FB31 - FB15)

SPL for rev 19-0

ABSTRACT

" This document describes the new Systems Programming Language SPL for
release at PRIMOS rev 19.0.

Page 2

SPL for rev 19-0

For rev 19.0, SPL is a derivative of PL1G. SPL follows all of the
language constructs of PL1 -subset G with the following exceptions:

1 PL1 I/O

Because SPL is a systems programming language, PL1G and full PL1 I/O
statements, I/O on conditions, and declaration attributes are NOT
supported, and any attempt to use them will result in compile errors.
This list includes the statements: CLOSE, DELETE, FORMAT, GET, OPEN,
PUT, READ, REWRITE, and WRITE. The following I/O on conditions are
illegal unless redefined by the user: ENDFILE, ENDPAGE, KEY,
UMDEFLNEDFILE, and UNDF. The following declaration attributes are
illegal: BACKWARDS, BUFFERED, BUF, DIRECT, FJWIRONMENT, FILE, KEYED,
LINESIZE, OUTPUT, PAGESIZE, PRINT, RECORD, SEQUENTIAL, SEQL, STREAM,
TITLE, UNBUFFERED, and UNBUF. Also, the following options are illegal:
DATA, EDIT, FILE, FROM, INTO, KEY, KEYFROM, KEYTO, LINE, LIST, PAGE,
SKIP, and STRING.

2 Select Statements

SPL Supports the select statement. The format of a Select block is:

Select;
When (<if expression^ <statement>;

[Otherwise <statements;]
End;

Or a Select block looks like:

Select (<value>);
When (<value list>) <statement>;

[Otherwise <statement>;]
End;

Where <statements is defined to be any simple statement not including
DECLARE, END, ENTRY, or PROCEDURE. <statement> may include a DO block
or a BEGIN block of statements, or be an IF statement. <if expression>
is an expression that evaluates to a BIT(1) result as in an IF
statement. <value> is any expression and <value list> is either
<value> or a list of <value>s separated by commas. A select block is
traversed by executing each WHEN clause until a TRUE condition is
found. A TRUE condition happens when the <if expression> part
evaluates to M'B or (a <value> in the When clause) = (<value> in the
Select statement). If a <value> in the When clause is not of the same
data type as the <value> in the Select statement, it is converted to

r* the data type of the latter before the comparison is done. After

Page 3

SPL for rev 19-0

either a When clause or the Otherwise clause is executed, control
passes to the first executable statement following the Select Block.
If none of the When clauses are satisfied and an Otherwise clause
exists, then the otherwise clause is executed, else ERROR is signalled.
NOTE: PLP does not signal an error and SPL does for a missing
otherwise clause. Only one clause of a Select "block will be executed
per invocation.

3 UNTIL

SPL supports the Until option of a DO statement. Until is the opposite
of the While option. It has the form UNTIl(<if expression>), Where <if
expression> is an expression that evaluates to a BIT(1) result as in an
IP statement. The result of an Until option is to execute the Do
group, and then test the Until part to see if it is false. The Do
group will continue to he executed WHILE the until part is false and
UNTIL it is true. Until differs from the While option in that the Do
group is only executed when the While is true. When the While part
becomes false, execution continues after the Do group. While and Until
can be used together to form a double exit from the Do group as in: DO
Until(expl) While(exp2). In this case the Do is executed when While is
true. After the first execution, we check the Until part. If it is
false, we repeat the While test and continue. If it is true, we leave
the Do group and continue. Until can appear anywhere in a Do statement
that While can appear.

f* 4 LEAVE

Leave is a statement for leaving loops without using a GOTO statement.
It is intended as a more structured approach for leaving a loop, since
when executed, execution continues with the first statement after the
corresponding Do group containing the Leave. Leave has The following
form: LEAVE [<label>]; where <label> is optional and if present is
the label of the Do group that we want to leave. For example:

DO WHILEd *B); DO WHILE('1 »B);
IP ready_to_leave IP ready_to_leave
THEN LEAVE; THEN GO TO EXIT;
ELSE continue; EISE continue;

END; END;
EXIT:;

and
acts like:

L00P1: DO WHILE('1»B); DO WHILE(' 1 »B);
IP loop_2 IP loop_2
THEN DO UNTIL(done); THEN DO UNTIL(done);
IP end_of_list IP end_of_list
THEN LEAVE L00P1; THEN GOTO EXIT1;
ELSE continue; EK3E continue;

END; END /* Do Until */;
EISE continue; ELSE continue;

Page

j*0?X

SPL for rev 19-0

END L00P1; END / * Do While * / ;
EXIT1:;

NOTE: If the LEAVE statement is used inside of a non-iterative
usage of the DO statement, that it will still leave THAT DO^ noT
an iterative DO that might contain the non-iterative DO. All DO's
are created equal!

5 LIKE

Like is an option of a structure declaration in a DECLARE statement.
It has the form: LIKE <structure reference)*, where
<structure reference> is the name of a structure declared earlier in
the program and known to the block containing the LIKE declaration; it
need not be a level-1 structure. Like has the effect as if the all of
the members of <structure reference> had been copied directly following
the variable with the like attribute, except that the level numbers are
adjusted upward or downward as necessary to be compatible with there
position in the new structure. For example:

Declare 1 structurejl,
2 length Fixed;
2 string Char(80);

Declare 1 structure_2,
2 char_var_1 like structurejl ,
2 size Fixed,
2 char_var_2 like structure_1;

is the same as:

Declare 1 structure_1,
2 length Fixed;
2 string Char(80);

Declare 1 structure_2,
2 char_var_1,
3 length Fixed,
3 string Char(80),

2 size Fixed,
2 char_var_2,
3 length Fixed,
3 string Char(80);

6 OPTIONS(VARIAELE)

SPL contains a declaration attribute for specifying that an entry point
can be called without checking its arguments for the correct type of
parameters. The attribute is called OPTIONS(VARIABLE), and is used as
in: DECLARE VARY ENTRY OPTIONS (VARIABLE);. This means that VARY can
be called from the user's program with different arguments without
causing errors, for example:

SPL for rev 19-0

CALL VARY(12345E3);
CALL VARY('This ia a string1, 23, '1 'B);
CALL VARY(VARY);

would then all be valid uses of the entrypoint VARY; The first will
call VARY with one argument, the floating point number 12345 * 10 ** 3 •
The second will call VARY with three arguments, a Character nonvarying
string, a Fixed Decimal constant 23, and a Bit string of ' 1 '. The
third will call VARY with the entry VARY as its one argument. NOTE:
OPTIONS (VARIABLE) is intended for use with non-builtin subroutine that
will except a variable number of arguments in its calling sequence like
the PRIMOS entry point I0A$, in which the number of arguments and the
format of them after the second is wholly dependent upon the format
control items appearing in the first argument. It will however work in
the global case as well. NOTE; beware of Machine restrictions apply
to the case of NO arguments versus ANY arguments as the called
subroutine may not execute properly under such circumstances.

7 Programmer Named Conditions

SPL allows the programmer to Create his own Condition names for use in
an SPL program. The manners in which to do this is as follows:
DECLARE <name> CONDITION; Then when the programmer wishes to reference
that condition he uses the CONDITION builtin function as in: ON
C0NDITI0N(<name>) handle condition;, or as in: SIGNAL
C0NDITI0N(<name>);. These conditions are just as real as the PL1 and
PRIMOS conditions are, and act in the same fashion.

8 -COPY, -'QUICK, -MAP

SPL has three command line options to the compiler that may be of use
to the programmer: -C0PY/-N0_C0PY, -QUICK/-N0_QUICK, and -MAP/-N0_MAP.
SPL uses -COPY, -N0_QUICK, and -MAP as its defaults.

8.1 C0PY/N0_C0PY

The C0PY/N0_C0PY flag allows the programmer to suppress the copying
of constants into temporary variables for subroutine calls. This
feature must be coded properly in the called subroutine, for if it
changes the value of one of its parameters which was passed as a
constant, then the value of that constant in the calling program
will be changed, causing subsequent use of that constant to use the
wrong value. N0__C0FY suppresses the copying of constants, COPY
copies constants before calling subroutines. Use of the N0_C0PY
option can save on the amount of executable code generated by the
SPL compiler.

^^N

Page

SPL for rev 19.0

8.2 QUICK/N0_QUICK

The QUICK/N0_QUICK flag allows SPL to call internal subroutines to
the compiled program via a JSX instruction wherever possible.
Internal subroutines that are recursive or are called from two
different subroutines who are not a part of the same parents, cannot
be Quick called and must ne invoked via a PCL. If N0_QUICK is
specified, or the DEBUG option is specified, all internal subroutine
are invoked via the PCL instruction. Local variables for
subroutines invoked via the Quick mechanism are stored with the
local variables of the first non-quicked parent of the called
subroutine. The -QUICK command line option is the SPL replacement
for the PLP procedure statement option: OPTIONS(SHORTCALL). The
PLP option can be specified PER PROCEDURE. The SPL option
encompasses all of the internal procedures of a compilation module.
NOTE: the external procedures of a compilation module can NOT be
Quick-called and must be PCLed.

8.3 MAP/-N0_MAP

The MAP option cantrols whether or not an identifier cross-reference
map will appear in the listing file after the program listing. When
a listing is specified, the MAP is the default. Use of -N0_MAP will
compress the listing file to contain only the program listing.
-XREP will force both the LISTING and MAP options on.

9 PLP features not supported

At rev 19.0, SPL does not support the following PLP BIFs: STACKPTR,
LINKPTR, STACKBASE, ADDREL, BASEREL, BASEPTR, PTR, SEGNO, REL, RING,
CSTORE nor does it support the PV REGFILE. SPL does not support the
following procedure options: GATE, STACKROOT, or NOCOPY. These will
all be implemented at a later rev. SPL does not support the use of the
SHORTCALL option at 19-0. The functionality can be gotten through the
use of the -QUICK command line option on the SPL command line. This
feature can be overridden by the use ofthe option NONQUICK. Under the
-QUICK flag, SPL will call via JSX only those routines which can be
shortcalled, all others will be called via PCL. Use OPTIONS(NONQUICK)
to ensure that all calls to the marked procedure are made through PCLs.

10 Bugs Fixed

The following bugs/problems were fixed for SPL rev 19.0.M2.

1. Use of !1 'B or 'O'B as constants in logical expressions of IF
statements will no longer cause the OPTIMIZER to fail with
ACCESS_VIOLATION$.

2. -Quick will no longer cause a random symbol table entry to be
trashed causing other random errors to be generated.

Page

SPL for rev 19-0

3. Use of BIEs in SELECT statements will now work correctly
instead of trying to do illegal conversions.

r* 4. ENTRY OPTIONS (VARIABLE) will now work when the argument is a
function call.

5. SPL will now tell you the correct number of errors if it has
trouble with

11 Other changes to 19.0.M2

Here are the other changes to SPL for 19.0.M2

1 . SPL will now generate 32 character external names. SEG will
truncate these names to 8 characters for its own usage. BIND will
accept all 32 characters.

r 2. -EIND_N0DE command line option is now obsolete and
unrecognized. The code generator has a better EIND_N0DE routine
that no longer requires the use of the command line option.

3. OPTIONS (CONSTANT) has been added as a means of placeing
constant static data into the PROCEDURE frame instead of the
LINKAGE frame of a program. This will allow the constants to be
shared among many users if the program is shared. NOTE:
Variables or arrays using this option should NOT be modified
during the course of program execution. Attempts to do so will

f^ cause runtime errors from both shared programs and EPEs.

4. -321 command line option has been removed. SPL does not
support generation of 321 mode code.

5. SPL will not allocate space for DATA ITEMS that are not used
by the current program module. This includes the suppression of
IPs to externals not referenced. It will however always generate
COMMON BLOCK DEFINITION groups for all EXTERNAL STATIC defined in

ps the program. The use of the -DEBUG command line option will force
allocation of all declared names and IPs. Any external that is
initialized by this program can be considered to be referenced.

Page 8

	DEREMER
	1
	2
	3
	PIELIB
	4
	5
	SPL
	6
	7
	8
	9
	10
	11
	12

